Tridiagonal matrices related to subsequences of balancing and Lucas-balancing numbers
نویسندگان
چکیده
It is well known that balancing and Lucas-balancing numbers are expressed as determinants of suitable tridiagonal matrices. The aim of this paper is to express certain subsequences of balancing and Lucas-balancing numbers in terms of determinants of tridiagonal matrices. Using these tridiagonal matrices, a factorization of the balancing numbers is also derived.
منابع مشابه
On the Properties of Balancing and Lucas-Balancing $p$-Numbers
The main goal of this paper is to develop a new generalization of balancing and Lucas-balancing sequences namely balancing and Lucas-balancing $p$-numbers and derive several identities related to them. Some combinatorial forms of these numbers are also presented.
متن کاملSome Congruences for Balancing and Lucas-balancing Numbers and Their Applications
Balancing numbers n and balancers r are solutions of the Diophantine equation 1 + 2 + . . . + (n 1) = (n + 1) + (n + 2) + . . . + (n + r). It is well-known that if n is a balancing number, then 8n2 + 1 is a perfect square and its positive square root is called a Lucas-balancing number. In this paper, some new identities involving balancing and Lucas-balancing numbers are obtained. Some divisibi...
متن کاملFibonacci numbers, alternating parity sequences and faces of the tridiagonal Birkhoff polytope
We determine the number of alternating parity sequences that are subsequences of an increasing m-tuple of integers. For this and other related counting problems we find formulas that are combinations of Fibonacci numbers. These results are applied to determine, among other things, the number of vertices of any face of the polytope of tridiagonal doubly stochastic matrices.
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملA Class of Recurrent Sequences Exhibiting Some Exciting Properties of Balancing Numbers
The balancing numbers are natural numbers n satisfying the Diophantine equation 1 + 2 + 3 + · · · + (n − 1) = (n + 1) + (n + 2) + · · · + (n + r); r is the balancer corresponding to the balancing number n.The n balancing number is denoted by Bn and the sequence {Bn} ∞ n=1 satisfies the recurrence relation Bn+1 = 6Bn−Bn−1. The balancing numbers posses some curious properties, some like Fibonacci...
متن کامل